California’s Low Carbon Diet

Beach partyWhen Coke and Pepsi were in the middle of their diet wars, California was an early battle ground. It is a state which tends to do much in excess, including drinking colas. In fact, only a handful of countries spend more money on beverages. Parties of happy and surprisingly fit youth were shown on TV commercials drinking their beverage of choice.

Now millions of Californians are being targeted as early adopters for a low carbon fuel diet. More miles, less carbon emission. It is the law. Executive Order S-1-07, the Low Carbon Fuel Standard (LCFS), calls for a reduction of at least 10 percent in the carbon intensity (measured in gCO2e/MJ) of California’s transportation fuels by 2020. Low Carbon Fuel Standard Program

Successful implementation of the LCFS will be critical to California’s even more ambitious law, the California Global Warming Solutions Act (AB-32), which requires California’s 2020 greenhouse gas emissions to not exceed 1990 emissions. The challenge is that in 2020, California’s population will be double 1990.

Because transportation is the main source of greenhouse gases in California, it is urgent that Californians use vehicles with better miles per gallon and that less greenhouse gases be emitted from the use of each gallon of fuel.

The world will learn from the successful implementation of LCFS because gasoline and diesel are currently becoming more carbon intense. There has been a shift from oil that is easy to get, to extraction and refining that increases greenhouse gases, as we make gasoline from tar sands, coal-to-liquids, and a future nightmare of shale oil. For example, monster earth movers strip-mine northern Alberta, extracting tar sands. Elizabeth Kolbert reported in the New Yorker that 4,500 pounds of tar sand must probably be mined to produce each barrel of oil. The converting of tar sands to petroleum will require an estimated two billion cubic feet of natural gas a day by 2012. Carbon intensity includes all the emissions from the earth movers and all the natural gas emissions from refining.

“All unconventional forms of oil are worse for greenhouse-gas emissions than petroleum,” said Alex Farrell, of the University of California at Berkeley. Farrell and Adam Brandt found that the shift to unconventional oil could add between fifty and four hundred gigatons of carbon to the atmosphere by 2100. Article

So, how can California reduce the carbon emission from fuel use? As a major agricultural state, E10 ethanol will be part of the solution. E10 can be used in all gasoline vehicles including 40 mile per gallon hybrids and in the new 100 mile per gallon plug-in hybrids being driven by early adaptors. Higher percentage blends of next generation ethanol are even more promising. Biodiesel is better at reducing carbon intensity than corn ethanol. Most heavy vehicles have diesel engines, not gasoline. Exciting new European diesel cars are also starting to arrive.

There are over 25,000 electric vehicles in use in California. Heavy use of electricity for fuel would take California far beyond the minimal target of a ten percent reduction in carbon intensity. This is especially true in California where coal power is being phased-out in favor of a broad mix of renewable energy from wind, geothermal, solar PV, large-scale concentrated solar, ocean, bioenergy and more.

California Low Carbon Fuel Standard Technical Analysis documents that there is a rich diversity of sources for biofuels within the state and in the USA including the following in million gallons of gasoline equivalent per year:

In-state feedstocks for biofuel production Potential volume
California starch and sugar crops = 360 to 1,250
California cellulosic agricultural residues = 188
California forest thinnings = 660
California waste otherwise sent to landfills = 355 to 366
Cellulosic energy crops on 1.5 million acres in California = 400 to 900
California corn imports =130 to 300

Forecasted 2012 production capacity nationwide Potential volume
Nationwide low-GHG ethanol = 288
Nationwide mid-GHG ethanol = 776 to 969
Nationwide biodiesel = 1,400
Nationwide renewable diesel = 175

A variety of scenarios have been examined with detailed analysis by U.C. Berkeley, U.C. Davis, and stakeholder workgroups that include technical experts from the California Energy Commission and the California Air Resources Board. Several scenarios are promising including one that would achieve a 15% reduction in carbon intensity with the following percentage mix alternate fuels and vehicles of some 33 million light duty vehicles by 2020:

Fuels:
Low-GHG Biofuel 3.1%
CNG 1.7%
Electricity 0.6%
Hydrogen 0.4%
Low-GHG FT Diesel .9%
Sub-zero GHG Biofuel 3.9%

Vehicles:
CNG vehicles 4.6%
Plug-in hybrid vehicles 7.4%
Flex-fuel vehicles 34.7%
Diesel vehicles 25.5%
Battery electric vehicles 0.5%
Fuel cell vehicles 1.9%

The ultimate mix will be determined by everyday drivers in their choice of vehicles and fuels. Low emission choices are becoming more cost-effective with the growth of electric vehicles, waste and renewable hydrogen, fuel from biowaste and crops grown on marginal land, and even fast growing poplar trees that absorb more CO2 than is emitted from resulting biofuels. The alternatives make fascinating reading for those interested in future scenarios for fuels and vehicles:

California Low Carbon Fuel Standard Technical Analysis and Scenario Details
California Low Carbon Fuel Standard Policy Analysis

California’s ambitious goals to reduce greenhouse gas emissions will benefit by the increased motive energy per CO2e that is described in these scenarios. California will also benefit from vehicles that will go more miles with the same energy input. Vehicles are getting lighter and safer as high-strength carbon fibers and plastics replace heavy metal. The shift to hybrids and full electric-drive systems allow replacement of heavy mechanical accessories with light electric-powered components. Hybrids allow big engines to be replaced with smaller, lighter engines. Pure electric vehicles can eliminate the weight of engines and transmissions. Less fuel weight is needed. Aerodynamic vehicles are becoming more popular.

Employer programs are leading to more flexible work, less travel, and increased use of public transit. Demographics may also cause a shift to more urban car sharing, use of public transit, bicycling, walking, and less solo driving. It can all add-up to a celebration of low-carbon living.

John Addison publishes the Clean Fleet Report which includes over 50 articles about clean transportation.

Share This Post

About Author: John Addison

Founder of the Clean Fleet Report, author of Save Gas, Save the Planet. John writes about electric cars, renewable energy, and sustainability. (c) Copyright John Addison. Permission to repost up to a 200 word summary if a link is included to the original article at Clean Fleet Report.