Fuel Cell 2007 Conference Highlights

Fuel Cell 2007 Conference Highlights

Fuel Cell 2007 Conference HighlightsSeveral hundred engineers, researchers, and managers shared fuel cell technology, trends, and market success at the Fuel Cell 2007 Conference. In some areas, fuel cells generate millions in revenues from commercial deployment; in other areas, fuel cells are early in research and development. A number of commercial products involve hydrogen PEM fuel cells. Business is steady for molten carbonate and phosphoric acid fuel cells. There was optimism about solid oxide fuel cells using a variety of fuels including landfill methane, natural gas, diesel, JP-8, and biomass.

In 2006, Ballard (BLDP) shipped 147 PEM fuel cells to replace lead-acid batteries in fork lifts. In large distribution and manufacturing environments, every minute counts. Fuel cells are cost justified in improving the productivity of moving goods. Fuel cells are more heat and cold tolerant, providing competitive advantage in many distribution centers.

Plug Power (PLUG) is aggressively pursuing the fork lift business. Plug recently acquired General Hydrogen, an early leader in Class 1 and 2 forklifts. Plug also acquired Celex, a leader in Class 3 forklifts. Contrary to concerns of some investors, it appears that Plug’s acquisitions may help Ballard who supplies fuel cell stacks to the acquired companies. Plug Power’s business model appears to be migrating towards integrated products and services for specific markets and applications. Ballard is a leader, in supplying fuel cell stacks; a field of growing and intensifying competition.

Toyota is also active in the hydrogen PEM forklift business since its acquisition of Raymond, a long-time provider of forklifts and material handling systems. Hydrogenics (HYGS) continues to see traction in fork lifts. Fuel cell forklift solutions are hybrid, also involving batteries for regenerative braking. Presentations forecasted 5,000 fuel cell sales in 2009 for forklifts and 20,000 in 2010.

Hydrogen fuel cells are making progress in cars and heavy-vehicles. Several auto makers will be adding more vehicles in demonstration fleets this year. Several have ranges of 250-miles and more. General Motors recently demonstrated a 300-mile range with its Sequel. GM is rumored to also start demonstrating vehicles running hydrogen in internal combustion machines (HICE). GM was to speak at the conference, but cancelled at the last minute. The reason, perhaps, was a GM reorganization.

General Motors thinks its hydrogen fuel cell is ready to move out of the research lab. GM is shifting responsibility for the work from its research labs to engineering groups that develop engines and vehicles for commercial production. 500 people are being reassigned.

The shift is a sign of GM’s increasing determination to have a fuel cell vehicle on the market by around 2011. “We’re transitioning from science and research to developing real propulsion systems,” Larry Burns, GM vice president for research and strategic planning, said in an interview.

Another area of hydrogen fuel cell success is providing remote stand-by power for the telecommunications industry. Batteries in temperature-sensitive areas have failed to often. The financial stakes are too high in telecommunications to continue depending on unreliable batteries. Telecoms such as Verizon and Sprint are buying from PlugPower and ReliOn. The Western States Alliance is buying from Altergy and Hydrogenics for stand-by back-up.

Big and hot fuel cells have a growing pipeline in the 250kW to multi-MW space. FuelCell Energy (FCEL) and Fuji offer molten carbonate energy solutions with by-product heat. Projects are using natural gas, propane, biogas, and anaerobic digester (AD) gas. POSCO, a Korean steel manufacturer, ordered a 7.5MW from FCEL to reduce their heavy use of 28 cents/kWh grid electricity. Linde will distribute FuelCell Energy for water treatment.

Long-term, molten carbonate growth may be threatened by solid-oxide fuel cells (SOFC). Keenly aware of this, FuelCell Energy finalized terms with the U.S. Department of Energy (DOE) for a $36.2 million Phase I award to develop a coal-based, multi-megawatt solid oxide fuel cell-based hybrid system.

Six industry teams have successfully completed tests of the first solid oxide fuel cell prototypes that can be manufactured at costs approaching those of conventional stationary power-generation technology. Part of the U.S. Department of Energy’s Solid State Energy Conversion Alliance (SECA) program, these results reflect progress towards commercially-viable solid oxide fuel cell (SOFC) systems.

The six industry teams, led by Acumentrics, Cummins Power Generation, Delphi Automotive Systems, FuelCell Energy, General Electric, and Siemens Power Generation, designed and manufactured SOFC electrical power generators in the 3-10 kilowatt range. The industry teams’ prototypes surpassed the Department of Energy (DOE) Phase I targets. The prototypes demonstrated:

  • Average efficiency of 38.5 percent and a high of 41 percent, exceeding the DOE target of 35 percent.
  • Average steady-stage power degradation of 2 percent per 1,000 hours, besting the DOE target of 4 percent per 1,000 hours.
  • System availabilities averaging 97 percent, topping the 90 percent DOE target across the board.
  • Projected system costs ranging from $724 to $775 per kilowatt, which eclipsed the DOE intermediate target for an annual production of 250 megawatts and positions the teams to meet the 2010 target of $400 per kilowatt target.

For home stationary power applications, it will require combined heat and power (CHP) to financially justify fuel cell installations. Adaptation is predicted in markets where utility-delivered costs are high for heat and electricity, such as in Japan and Korea. Ballard will be delivering a higher temperature PEM to address the CHP market.

In the long-run, conference attendees showed more enthusiasm for SOFCs which can use existing fuels, such as kerosene in Japan and natural gas in other markets. For example, Ceres Power (CWR.L) is developing low cost and robust fuel cells that will be combined into stacks capable of generating between 1kWe and 25kWe. EDF Energy Networks, the UK’s largest electricity distributor, will be offering Ceres for home CHP.

SOFC may be the fuel cell of choice for auxiliary power on trucks and military vehicles. Delphi Automotive Systems has SOFCs in development for on vehicle use of diesel and JP-8. Cost effective removal of sulfur is a major issue, especially for the DOD’s JP-8.

Surprisingly, there was little discussion of micro fuel cells. Major Japanese consumer electronic companies were at the conference, but no products were presented. Continued reduction in power demand plus advancements in batteries and ultracapacitors may obviate micro fuel cell adoption.

The Fuel Cell 2008 Conference is planned to be in Long Beach, California, in June 2008.